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Abstract. The mean field approach of glassy dynamics successfully describes systems which are out-of-
equilibrium in their low temperature phase. In some cases an aging behaviour is found, with no stationary
regime ever reached. In the presence of dissipative forces however, the dynamics is indeed stationary,
but still out-of-equilibrium, as inferred by a significant violation of the fluctuation dissipation theorem.
The mean field dynamics of a particle in a random but short-range correlated environment, offers the
opportunity of observing both the aging and driven stationary regimes. Using a geometrical approach
previously introduced by the author, we study here the relation between these two situations, in the
pure relaxational limit, i.e. the zero temperature case. In the stationary regime, the velocity (v)-force (F )
characteristics is a power law v∼ F 4, while the characteristic times scale like powers of v, in agreement
with an early proposal by Horner. The cross-over between the aging, linear-response regime and the non-
linear stationary regime is smooth, and we propose a parametrization of the correlation functions valid
in both cases, by means of an “effective time”. We conclude that aging and non-linear response are dual
manifestations of a single out-of-equilibrium state, which might be a generic situation.

PACS. 05.70.Ln Non equilibrium and irreversible thermodynamics – 64.70.Pf Glass transitions –
75.10.Nr Spin-glass and other random models – 83.50.Gd Nonlinear viscoelasticity

1 Introduction

Equilibrium is the situation where all fast processes have
already taken place while very slow processes have not yet
started happening [1]. In contrast, systems with slow dy-
namics are characterized by a broad distribution of relax-
ation times, ranging from the microscopic scale (picosec-
ond) to the macroscopic one (hours or days). For instance,
glassy systems have an equilibration time, either infinite,
or much longer than the laboratory time scale. These sys-
tems reveal their out-of-equilibrium state in phenomena
such as aging or non-linear response. Slow dynamics is
generally attributed to the presence of thermally activated
barrier crossing in the configuration space [2], but others
mechanisms, such as the so-called “entropic barriers” may
also contribute [3]. Glassy dynamics is observed when the
main relaxation time τ of the system becomes larger than
the typical laboratory time scale, as is the case for super-
cooled liquids [4].

The aging behaviour of spin glasses has been thor-
oughly investigated [5]. The thermoremanent magnetiza-
tion of field cooled samples shows a strong waiting time
dependence (where the waiting time tw is the time in-
terval between the temperature quench and the measure-
ment). These systems have an a priori infinite internal
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relaxation time, and the late stage of the relaxation is
instead controlled by the waiting time itself. Moreover,
field cooled (waiting for tw and switching off the field)
and zero field cooled (waiting for tw and switching on the
field) show a remarkable complementarity of the magneti-
zation curves [6,7]. While out-of-equilibrium, as indicated
by its significant waiting time dependence, the response
of the system is still linear in the applied field, provided
it is weak enough.

Glassy dynamics is also observed in the dissipative dy-
namics of high-Tc superconductors. Superconducting sam-
ples with quenched disorder, at high enough magnetic field
and temperature, offer a significant resistance to a flowing
dc current, due to the thermal motion of the flux lines. A
transition line is believed to separate an ohmic regime (the
vortex liquid) from a true superconducting state (the vor-
tex glass) [8]. In the latter, and in the limit of a vanishingly
small current j, the dissipation takes place by activation
of “bundles” of flux lines over pinning energy barriers.
According to the scaling theory of the vortex glass, the
typical time needed for such a move, τ(j), diverges expo-
nentially fast as j tends to zero [9]. In this situation, the
response (the voltage) is a non-linear function of the driv-
ing force (the current). The system is out-of-equilibrium,
because of a constant rate dissipation, but stationary, at
variance with the spin glass aging. The relaxation time
τ(j) which would be infinite in the absence of driving force,
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is regularized by any small but constant j, and inversely
related to the magnitude of j.

Important and related issues are the supercooled liq-
uids dynamics and the rheology of soft glassy materials.
In the first case, the mode-coupling approach predicts an
increase of the structural relaxation time τ upon cool-
ing [10]. Aging was found during the early relaxation of a
Lennard-Jones fluid [11]. On the other hand, a constant
shear rate flow seems to be able to change the value of
τ , resulting in a shear rate dependent viscosity, e.g. a
non-linear response of the fluid [12]. More generally, this
“shear-thinning” behaviour is well known in the context of
soft-matter rheology, and a phenomenological model based
upon glassy dynamics was proposed [13]. These are situa-
tions where aging and non-linear response certainly coex-
ist as manifestations of a more general glassy dynamics.

Among the existing theoretical approaches on glassy
systems, the mean field dynamics is a very promising
one. It has been already used to suggest that the pres-
ence of dissipative forces generically prevents the ag-
ing phenomenon [14,15]. In this framework, the out-of-
equilibrium character of a system is made precise by the
existence of a generalized fluctuation-dissipation theorem,
related in turn to the entropy creation rate [16].

A model of particular interest is the mean field dy-
namics of a particle with a quenched pinning potential. If
isolated, the particle shows an aging behaviour with a log-
arithmic growth of the time correlation functions [17,18].
In the presence of a constant driving force, the dynamics
is believed to become stationary, with a power law depen-
dence of the particle’s velocity in the applied force [19].

Recently, the author presented a geometrical descrip-
tion of the aging and linear response regime of this model,
at zero temperature [20]. This approach is extended, in
this paper, to the non-linear stationary regime. As a re-
sult, we find that aging, linear response dynamics on the
one hand, and stationary, non-linear response dynamics on
the other hand, are indeed dual manifestations of a sin-
gle out-of-equilibrium state. The constant force is found
to interrupt efficiently the aging dynamics, and to control
the characteristic times, which in turn control the effec-
tive friction coefficient in the stationary regime. The re-
sulting velocity-force characteristics is v ∝ F 4, while the
cross-over time between aging and stationary regime is
tF ∝ F−3. These predictions are compared with the nu-
merical integration of the mean field equations. We finally
suggest a scaling behaviour for the correlation function
of this model which, according to our numerical findings,
interpolates smoothly between the two different regimes,
demonstrating their common origin.

2 Mean field equations and the Horner result

We focus on the zero temperature relaxational dynamics
of a particle in a quenched random Gaussian potential [20].
The particle evolves in a N -dimensional space, under the
simultaneous effect of a quenched random force −∇V
and a constant driving force F , and the equation for the

position x(t) is:

ẋ(t) = −∇V (x(t)) + F . (1)

The potential V (x) is a quenched disorder, chosen from
a Gaussian distribution, with correlations (the overline
stands for the average over the quenched disorder):

V (x) · V (x′) = N exp
(
−‖x− x′‖2

N

)
; V (x) = 0. (2)

This form ensures a meaningful N→∞ limit, where each
coordinate xi(t), or gradient component ∂iV (x), remains
of order one, while the norms ‖x(t)‖, ‖∇V ‖ scale like
N1/2. The force is directed along the direction i = 1.

The thermodynamic limit N→∞ is taken first, which
makes the zero temperature dynamics non-trivial [21]. In
this mean field limit, the relaxation process is completely
described by the displacement u, the response function r
and the correlation functions b and d (ix̃ being the Martin-
Siggia-Rose auxiliary time [22]).

u(t) = N−1/2 x1(t); (3)

r(t, t′) = N−1
N∑
j=1

xj(t)ix̃j(t′); (4)

b(t, t′) = N−1
N∑
j=2

(xj(t)− xj(t′))2; (5)

d(t, t′) = N−1
N∑
j=1

(xj(t)− xj(t′))2;

= b(t, t′) + [u(t)− u(t′)]2. (6)

The Dyson equations for r, b, d, u are a closed system of
coupled integro-differential equations, which include the
equations of [18,19] as a particular case:

∂tr(t, t′) = δ(t− t′)

−4
∫ t

0

ds exp(−d(t, s)) r(t, s) [r(t, t′)− r(s, t′)]; (7)

∂tb(t, t′) = (2T )− 4
∫ t

0

ds exp(−d(t, s)) [r(t, s)− r(t′, s)]

−4
∫ t

0

ds exp(−d(t, s))r(t, s)[b(t, s)+b(t, t′)− b(s, t′)]; (8)

∂tu(t) = F − 4
∫ t

0

ds exp(−d(t, s)) r(t, s)[u(t) − u(s)].

(9)

The temperature term (2T ) is actually zero in our case. It
is also convenient to define the integrated response R and
the energy E :

R(t, t′) =
∫ t

t′
ds r(t, s); (10)

E(t) = −2
∫ t

0

ds exp(−d(t, s))r(t, s). (11)
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In a seminal paper, Horner described the stationary state
reached by the system when driven with a finite force F ,
in the case of short range, power-law correlations [19].
We have found that the system (9) does indeed lead to
a stationary situation, that we study in detail in this pa-
per. One must mention however that the stationary state
reached by the particle depends on how the system is pre-
pared, in the same way as thermalized initial conditions
can prevent aging in the p-spin case [23]. The stationary
state is found only if the system is quenched from a high
enough temperature [24]. Results for a similar driven sys-
tem have also recently been published [25].

Let us summarize the main properties of the station-
ary solution found by Horner [19]. The correlation func-
tions are time-translationally invariant (TTI): r(t, t′) =
R(t− t′), B(t, t′) = B(t− t′) while the displacement goes
linearly with time u(t) = vt. The system (9) becomes a set
of non causal equations to solve self-consistently. A non-
trivial feature of this solution is the emergence of char-
acteristic time scales dependent on the velocity. With the
notations of [19], tp(v) is the characteristic time for break-
ing the fluctuation-dissipation theorem, while ta(v) con-
trols the main “α” relaxation of the correlation function
B(t). These characteristic times play a very similar role to
the time scales tf and tb respectively, introduced in [20],
and subsequently we identify tf ≡ tp, tb ≡ ta. In the long
time regime, t ∼ tb:

B(t) = q + B̂

(
t

tb(v)

)
, (12)

with,
tf (v) ∼ v(η−1)ζ , (13)

tb(v) ∼ vη−1, 0 < η, ζ < 1. (14)

The exponents depend (in a complex way) on the
correlator (2) [19]. B̂ is a scaling function discussed
in Appendix B, and q is the “plateau value” of B(t),
equal to 0 in the zero temperature limit. Meanwhile, the
fluctuation-dissipation theorem, obeyed for t ≤ tf , is
violated around t ' tf , and becomes:

dB(t)/dt = 2TR(t); t� tf . (15)

The effective temperature T and the plateau value q are
identical to those obtained in the aging case [18].

The velocity-force curve is given by (9), and in the
limit of small velocities,

v ∼ F/tb(v). (16)

The time tb(v) plays the role of an effective friction
coefficient, controlled by the velocity. The v(F ) curve is
a power law.

v ∼ F 1/η. (17)

Let us mention for completeness the presence of a
third time scale, called t′a in [19], defined by B(t′a) =
v2t′2a. As we consider an exponential correlator, we have
exp(−B(t)− v2t2) ≡ exp(−B(t))× exp(−v2t2) and in our
case t′a ∼ v−1. Otherwise, we believe that the results of
[19] all qualitatively apply to the exponential correlator
case (anyway t′a does not play a direct role in the dynam-
ics of short range correlated models).

3 Geometrical description of the driven
stationary dynamics

In [20] was proposed a geometrical analysis of the relax-
ational dynamics of the particle. This approach uses a
comoving frame, defined by the eigendirections of the Hes-
sian matrix ∇∇V (x), at the precise point x(t) where the
particle stands. This frame is made ofN vectors {ei}, each
one eigenvector of the Hessian∇∇V (x). The distribution
of the corresponding eigenvalues is a semi-circle of radius
4, shifted towards the positive values, such that the lowest
one is equal to −S. Each eigenvector ei has an eigenvalue
λi − S, and the density of states of the λi is:

ρ(λ) = (8π)−1
√
λ (8− λ). (18)

The quantity S is positive, and depends linearly on the
energy of the system, e.g. S(t) = 4 + 2V (x(t))/N = 4 +
2E(t). In the aging case, S(t) is a time-dependent function,
while in the stationary case, S is constant.

One projects the instantaneous velocity ẋ in the above
frame such that:

ẋ =
N∑
i=1

γiei. (19)

Because the spacing of the eigenvalues is of order 1/N ,
the set of λi becomes dense, and one replaces the discrete
sum over the index i by a continuous one, involving the
semi-circular density of eigenvalues ρ(λ):

ẋ2 =
∫ 8

0

dλ ρ(λ) g(λ, t). (20)

The distribution g(λ, t) represents the mean value of the
component x2

i , locally averaged over the indices i such that
λi ' λ. We have justified in [20] the following self-similar
form for g(λ, t):

x2
i ∼ g(λi, t),

g(λ, t) = S(t)Ĝ
(
λ/S(t)

)
, (21)

where λ stands for any direction with a curvature equal
to λ−S [20]. The prefactor S in front of the distribution
in fact comes from an assumption about the value of the
exponent −κ governing the power law decay of E(t) and
S(t) ∼ t−κ, which we believe to be −2/3. This assumption
is supported by our numerical results.

The characteristic times tf and tb are controlled by S,
and scale like:

tf ∼ S−1;

tb ∼ S−3/2; (22)

making the instantaneous velocity equal to:

u̇(t) = FS3/2 = F/tb(t). (23)

When a constant force F is applied, the dynamics
changes from an aging linear response behaviour to a sta-
tionary regime [20]. At short times, the displacement u(t)
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Fig. 1. Determination of the cross-over time tF , defined as the
time where the slope of the integrated response R(t, 0) is equal
to the mobility limt→∞ u̇(t)/F .

is proportional to the integrated response FR(t, 0), while
at long times, it becomes equal to vt.

One expects the stationary regime to take over the ag-
ing regime when the dynamics is dominated by the exter-
nal force F rather than by the gradient −∇V (x(t)). This
happens at a time tF , inversely related to the magnitude
of the force. Our numerical definition of tF is the time
where the slope of the asymptotic curve u(t)/F ' vt/F is
equal to the slope of the (logarithmic) integrated response
R(t, 0), as shown in Figure 1 for F = 0.3.

In our situation, the dynamics is controlled by the
value of S; inverse friction and diffusion coefficients are
both proportional to S3/2. In the aging case, S(t) tends
to zero as a power law, and the dynamics of the system
gets slower and slower. A look at Figure 2 however shows
that in the presence of a force, S does not go to zero,
but to a finite value S(F ), controlled by F , and inversely
related to the magnitude of F . The same is true for the
energy E(t) = −2 + S(t)/2, which stands higher than in
the absence of driving force. Both diffusivity and mobility
are kept finite thanks to a non zero driving force. What is
needed is to compute S(F ). For this purpose, one assumes
that the self-similar form (21) is still valid in the station-
ary regime. A justification is provided in Appendix A.

The zero temperature relaxation equation is:

ẋi = −∂iV (x) + Fi, (24)

while the energy obeys:

Ė(t) = 1/N
∑
i

∂iV (x(t))ẋi(t),

Ė(t) = −ẋ2(t)/N + Fu̇(t). (25)

One now uses the distribution g(λ, t) of the instanta-
neous velocity components ẋ2

i , the density of eigenvalues
ρ(λ) and finds:

−Ė(t) + Fu̇(t) =
∫

dλ ρ(λ) g(λ, t). (26)
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Fig. 2. Family of curves E(t) + 2 for increasing forces, ranging
from F = 0.05 to 0.5. The limit value limt→∞ E(t) + 2 is a
monotonically increasing function of F , equal to S(F )/2. The
effective mobility and diffusivity are directly related to S(F ).
The system stays above the marginal states, in a region with
a finite extensive number of downhill directions.

In the stationary regime, Ė(t) = 0 and u̇(t) = v. The
equation (26) reduces to a balance between the mechani-
cal power given by the force, and a kind of intrinsic dissi-
pation (ẋ2).

Fv =
∫

dλ ρ(λ) g(λ). (27)

Assuming that g is still equal to SĜ(λ/S) (cf. Ap-
pendix A), one gets:

Fv ∼ S5/2. (28)

From (28) and (23), one finally finds S as a function of
the force,

S ∼ F 2, (29)

the resulting velocity force characteristics,

v ∼ F 4, (30)

and the force and velocity dependence of the time scales:

tf ∼ F−2 ∼ v−1/2; (31)

tb ∼ F−3 ∼ v−3/4. (32)

These results are in full qualitative agreement with the
findings of Horner [19]. The main relaxation time tb does
not scale as v−1, as could be expected from a simple
dimensional analysis, but is shorter, such that limv→0

vtb(v) = 0.
We determine the cross-over time tF by a matching

argument. In the linear response regime, S(t) decreases
as t−2/3, as the force acts only as a weak perturbation.
The linear response breaks down when the perturbation
modifies the nature of the relaxation itself. This happens
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Fig. 3. The parameter S as a function of the force, for
F = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, in log coordinates, and nor-
mal coordinates (inset). The boxes stand for a run, up to a time
t = 200 while the straight line corresponds to t = 400. When-
ever the boxes differ from the line, the value is not converged.
See text for details.

when S(tF ) reaches the order of magnitude of its limit
value S(F ) = F 2 (Eq. (29)), leading to t−2/3

F = F 2, or:

tF = F−3. (33)

Physically, this means that a typical coordinate fi of the
force F , along a downhill direction i, is of the same or-
der of magnitude as the gradient of the potential −∂iV ,
or the instantaneous velocity ẋi [20]. From equation (21)
and fi ' F , one gets F 2 ' f2

i ' ẋ2
i ' S, in agreement

with (29).
Let us mention that a qualitatively similar cross-over

has been observed in the simulated dynamics of a driven
polymer, in the presence of quenched disorder [26].

4 Numerical results

We present numerical results supporting the findings of
the previous section.

Figure 3 shows S(F ) vs. F , in log coordinates, and in
regular coordinates (inset), for F = 0.05, 0.1, 0.2, 0.3, 0.4,
0.5 and F = 0.6. The squares are the values obtained with
tmax = 200 (h = 0.1), and the full curve with tmax = 400
(h = 0.2). One sees that the first three values are not
well converged. If we ignore them, the overall shape of the
curve is concave (downward curvature). The slope of the
tangent curve between the arrows gives an exponent equal
to 1.81 (h = 0.1) and 1.87 (h = 0.2). Because the curve
is concave, we believe that these values are a lower bound
for the real exponent, consistent with our prediction: 2.

Figure 4 shows v(F ) vs. F , in log coordinates, and
in regular coordinates (inset). The squares are the values
obtained with tmax = 200 (h = 0.1), and the crosses with
tmax = 400 (h = 0.2). As for Figure 3, the first three val-
ues are not well converged. If we ignore them, the overall
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Fig. 4. The velocity v as a function of the force F , in log
coordinates, and normal coordinates (inset). Same remark as
for Figure 3.
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Fig. 5. The time tF as a function of the force F in log coor-
dinates. Inset: tF as a function of F . The first three values are
not accurate (tF larger than our maximum time). The fitted
exponent of the straight part is −2.72 instead of 3; −2.72 is a
lower bound for the real value.

shape of the curve is again concave. The slope of the tan-
gent curve between the arrows gives an exponent equal to
3.73 (h = 0.1) and 3.82 (h = 0.2). Repeating the above
argument, these values are a lower bound for the real ex-
ponent, consistent with 4.

A plot of tF vs. F is reported in Figure 5. Again the
system has not reached its asymptotic regime as far as
the first three values F ≤ 0.2 are concerned. This can be
checked by looking at the first derivative u̇(t) which must
be constant when t reaches the upper limit of the time
window, here t = 400. The fitted value on the straight part
of the graph, in logarithmic coordinates, gives an exponent
−2.72 instead of −3. Again the true asymptotic limit F →
0 is out of reach, due to limited computer facilities.
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These numerical results are not good enough to prove
the exactness of the equations (29) and (30). However they
provide lower bounds which constrain the exponents to be
larger than 1.8 for S, and larger than 3.8 for v. On the
other hand, if we assume that we are close enough to the
asymptotic regime where equations (29) and (30) apply,
one expects the real exponents not to differ too much from
the above numerical values. In this respect, we think that
the numerics is in agreement with our findings. As far as
the cross-over time is concerned, the numerical exponent is
−2.72 instead of−3. A larger time window would certainly
improve the agreement. No doubt that new algorithms like
the one presented in [27] may help to refine these results.

5 A unified description
of the out-of-equilibrium regimes

In the isolated aging regime, at zero temperature,
the correlation function obeys, as a particular case of
equation (43) of Appendix B [18]:

b(t, t′) = ln
(
h(t)
h(t′)

)
, (34)

where the parametrization function is related to the time-
scale tb by :

tb(t) = h(t)/h′(t). (35)

As tb is proportional to S−3/2, we have :

h(t)
h(t′)

= exp
[
C

∫ t

t′
ds S3/2

]
,

b(t, t′) = C

∫ t

t′
ds S3/2. (36)

On the other hand, equation (23) leads immediately to

u(t)− u(t′)
F

= C′
∫ t

t′
ds S3/2. (37)

We observe that the scaling form (12) resembles ex-
pression (34) (and (43)), with q = 0 at zero temperature.
We prove in Appendix B that the scaling function of the
aging regime [18] and the driven regime [19] are indeed
equal, and thus B̂(x) = x in (12) (strictly speaking, B̂(x)
is only proportional to x, but one can choose tb such as
B̂(x) = x). Thus, equations (36) and (37) make sense in
the aging regime as well as in the stationary regime.

The integral
∫ t
t′ ds S3/2 is the effective time variable for

the system, interpolating smoothly between ln(t) (aging,
linear response regime) and t/tb(v) (stationary regime)
while S−3/2 is an effective age, growing like the waiting
time in the aging regime, and bounded in the stationary
regime. Interestingly, a similar effective age is used in the
context of the stick-slip motion occurring in dry friction
experiments [28].

The prediction for (36) and (37) is checked by plotting
b(t, t′) vs. [u(t)−u(t′)]/F , shown in Figure 6. One expects

0 10 20
[u(t)u(t’)]/F
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t’=20; F=0.5
t’=40; F=0.1
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Fig. 6. The correlation b(t, t′) vs. the displacement [u(t) −
u(t′)]/F , for F = 0.1 and 0.5. The force is switched on at t′,
successively equal to 0, 20 and 40. Inset: the short-time be-
haviour. See text for details.

b(t, t′) and [u(t)−u(t′)]/F to be proportional, both in the
aging and stationary regimes, provided equations (36, 37)
hold, which is the case for a large enough time separation
t− t′.

In Figure 6, b(t, t′) is plotted against [u(t) − u(t′)]/F
for F = 0.1 (crosses, squares and diamonds) in the linear
response regime and for F = 0.5 (continuous lines) in the
non-linear regime. The force is zero till t = t′, and then
switched on; t′ takes the value 0, 20 and 40. As far as
F = 0.5 is concerned, the transition from linear to non-
linear regime is not visible on this curve, and in any case
very smooth. The slope of the curve defines the effective
temperature 2T , equal to the ratio C/C′ in equations (36)
and (37). The effective temperature thus makes sense in
both linear and non-linear regimes.

As the force is switched on at t′, there is a short-time
“elastic” (or “reversible”) displacement. This is how the
directions with a positive curvature respond to the new
static constraint, and this corresponds to the short hor-
izontal step at the origin, seen in the inset of Figure 6.
The finite slope part of the curve corresponds to the slow
wandering motion of the particle in the energy landscape
(“plastic”, or “irreversible”), in the regime where equa-
tions (36) and (37) apply. We conclude that Figure 6 sup-
ports the proportionality of u(t)−u(t′) and b(t, t′), once
the short time regime has been taken into account.

A close look near the origin of the graph (inset of
Fig. 6) shows that the F = 0.5 curve is slightly shifted
from F = 0.1, but parallel to it. This shift goes rapidly to
zero as F → 0. The shift is presumably there because 0.5
is already a large value of the force, leading to a departure
from the ideal curve corresponding to F � 1.
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6 Conclusion

In this paper, we have proposed a consistent picture for
the stationary driven dynamics, in the mean field approx-
imation and zero temperature limit, of a particle in a
quenched, exponentially correlated, random potential.

The velocity (v)-force (F ) relation is a power law v =
F 4, while the main relaxation time is tb ' v−3/4. The
product vtb tends to zero as v vanishes. These findings
are consistent with earlier work [19]. The driving force
is found to generate a relaxation time smaller than the
“dimensional” time scale v−1, which is probably a generic
feature of the mean field short-range correlated potentials.

If the force F is small enough, a linear response around
the aging regime is found, up to a time tF , scaling as F−3.
A plot of the displacement (u(t)−u(t′))/F vs. the correla-
tion b(t, t′) shows no sign of discontinuity, when the linear
response regime is replaced with the non-linear stationary
regime. We interpret it by saying that when a small force is
applied, the dynamical properties of the system (mobility,
diffusivity) are controlled by the effective age S−3/2. The
quantity S3/2 is proportional to the number of negative
eigenvalues in the spectrum of the Hessian of the Hamilto-
nian. The effective age is proportional to the waiting time
in the aging regime, and is finite in the stationary case.

The effective time
∫ t S3/2ds, closely related to the

correlation function b(t, t0), grows logarithmically with t
in the aging regime, and linearly with t in the station-
ary regime. The effective temperature T generalizing the
fluctuation-dissipation theorem, remains unchanged in the
non-linear regime.

Future work will determine to what extent are the
present features generic from other short range correlated
models, and finite dimensional models. Even though such
a power law dependence of the characteristic times in the
driving force is not observed in realistic systems, the qual-
itative behaviour presented in this study – cross-over be-
tween linear to non-linear regime, coexistence of aging and
non-linear stationary dynamics –, could indeed be a very
generic situation.

I especially thank L. Cugliandolo and J. Kurchan for having
lent me their numerical code, and S. Scheidl, J.P. Bouchaud,
J. Kurchan, M. Mézard and A. Cavagna for discussions on
this field. I thank D. Feinberg for suggestions and criticisms
about the manuscript. I warmly thank the hospitality of the
Department of Physics, IISc, Bangalore, where a part of the
writing has been done.

Appendix A: The energy balance

Let γi(t) be the coordinates of the instantaneous velocity
ẋ(t) in the comoving frame {ei(t)} (19). When F = 0, γi
is also the coordinate of −∇V . Using the local average

defined in [20], one finds:

‖ẋ‖2(t) =
∑
i

ẋ2
i (t) =

∑
i

γ2
i (t),

= N

∫
dλ ρ(λ) g(λ, t). (38)

The derivative of ‖ẋ‖2(t) reads :

∂t‖ẋ‖2(t) =
N∑
j

∂t(−∂jV + Fj)2,

= −2
∑
jk

∂jkV ẋj · ẋk,

= −2N
∫

dλ ρ(λ) (λ− S) g(λ, t). (39)

We deduce that, in the stationary situation, for all S,∫
dλ ρ(λ) λ g(λ) = S

∫
dλ ρ(λ) g(λ), (40)

which is in favour of a scaling form g(λ) = ΓĜ(λ/S). As
∂iV (x(t)) = −ẋi(t) + Fi, the equation for Ė(t) is :

Ė(t) = N−1
∑
j

∂jV · ẋj ,

= N−1
∑
j

{−ẋ2
j(t) + Fj · ẋj(t)}.

The product N−1
∑
j Fj · ẋj is by construction equal to

Fu̇(t). Thus, (this is Eq. (26)):

Ė(t) = −
∫

dλ ρ(λ) g(λ, t) + Fu̇(t). (41)

The energy balance (28), and the factorized form of g(λ)
imply in the stationary regime :

ΓS3/2 ∝ F 2S3/2. (42)

However the relation between S and Γ remains undeter-
mined by the present argument. For the sake of simplicity,
we can suppose that the equality S = Γ , true in the aging
regime, remains true in the stationary regime. This as-
sumption is in fact equivalent to a matching argument,
when the distribution g(λ, t) = S(t)Ĝ(λ/S(t)), crosses
over the distribution g(λ) = F 2Ĝ(λ/S(F )) around t = tF .
The matching of g(λ, t) and g(λ) leads to the identifica-
tion S(F ) = F 2. One cannot rule out, rigorously, more
complicated behaviours, which could lead to a different
velocity-force characteristics. The assumption Γ = S is
just the most natural one.

Appendix B: The scaling form
of the correlation function

In the isolated situation, the correlation function in the
aging regime reads, for any finite temperature T [18,29]:

b(t, t′) = q + B̃

[
ln
(
h(t)
h(t′)

)]
. (43)
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A general equation for B̃(u) is obtained in reference [18]
(Eq. 6.22, with the opposite sign convention for f), and
reads:

0 = B̃(u)f ′′(q)− f ′(q + B̃(u)) + f ′(q)

+
2χq
T
f ′′(q)

∫ u

0

du′ B̃′(u′)f ′′(q + B̃(u))B̃(u− u′) (44)

whose solution is B̃(u) = const.×u, leading to (34), when
q = 0. The function f = exp(−x) stands for the cor-
relator (2), T for the temperature, q for plateau value
of the correlation function b, and χ for the fluctuation-
dissipation violation parameter (see Eq. (46) below).

On the other hand, in the stationary regime, the equa-
tion for b(t, t′) = B(t− t′) = q+B(t− t′) and R(t− t′) =
r(t, t′) is (Eq. (2.9) in Ref. [19], again with the opposite
sign convention for f):

∂tB(t) = 2T −
(∫ ∞

0

ds 4f ′′(B(s) + v2s2)R(s)
)
B(t)

+
∫ t

0

ds 4f ′′(B(s) + v2s2)R(s)B(t− s)

+
∫ ∞

0

ds
{(

4f ′(B(t+ s) + v2(t+ s)2)

−4f ′(B(s) + v2s2)
)
R(s)

+
(

4f ′′(B(t+ s) + v2(t+ s)2)R(t+ s)

−4f ′′(B(s) + v2s2)R(s)
)
B(s)

}
· (45)

One knows that the main relaxation time tb is much
smaller than v−1, and asymptotically, limt→0 vtb = 0. The
above integrals can be safely cut beyond a cut-off Λ such
that tb � Λ � v−1. The contributions

∫∞
Λ

are negligible
because the relaxation of B(t) has already taken place,
while in the integrals

∫ Λ
0 , the term v2s2 can be neglected

compared with B(s) in the argument of the correlators f ′
and f ′′.

One introduces the quasi fluctuation-dissipation pa-
rameter X , defined by:

−X(B(t)) dB(t)/dt = R(t). (46)

X is equal to its equilibrium value −1/2T if B < 0 and to
χ if B > 0. Equation (45) becomes:

∂tB(t) = 2T +(∫ Λ

0

ds 4f ′′(q +B(s))X(B(s))dB(s)/ds

)
B(t)

−
∫ t

0

4f ′′(B(s))X(B(s))dB(s)/ds B(t− s)

−
∫ Λ

0

ds
{(

4f ′(q +B(t+ s))− 4f ′(q +B(s))
)

×X(B(s))dB(s)/ds

+
(

4f ′′(q +B(t+ s))X(B(t+ s))dB(t+ s)/ds

−4f ′′(q +B(s))X(B(s))dB(s)/ds
)}
B(t). (47)

Each integral
∫ b
a

has to be split to take into account the
short time quasi-equilibrium regime and the long time
regime. As the time scale tf separates these two regimes,
one writes

∫ b
a

=
∫ a+tf
a

+
∫ b−tf
a+tf

+
∫ b
b−tf . The parameter X

is then set to −1/2T or χ accordingly, and most of the
integrals can be reduced to boundary terms. One neglects
the time derivative ∂tB(t) in the asymptotic long-time
regime, and the result is:

0 = 2T +

(
4χ
∫ Λ'∞

tf'0

f ′′(q +B)dB

)
(q +B(t))

−4q
(
χ+

1
2T

)
×
(
f ′(q)− f ′(q +B(t))

)
(48)

−4χ
∫ t

tf'0

ds dB(s)/ds f ′′(q +B(s))(q +B(t− s)).

By using limt→∞ B(t) = ∞, q2 f ′′(q) = T 2 and
−4χ

∫
f ′′(B)dB = 2T/q, the equation (48) for B coin-

cides exactly with (44). As the equation (48) is invariant
upon time dilatations, B̂(u) = B(t/tb) is a solution of (44)
and without loss of generality, one has:

B̂(u) = B̃(u) = u, (49)

which is the announced result.
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